COM+ security is powerful, but
not perfect. These tips can help
you make the most of it.

n last month’s Productive COM+ column, you
learned how COM+ security enables you to leave
almost all security-related functionality outside your
components. You learned to use roles for access con-
trol and declarative attributes for the rest of the secu-

CHECK THE SECURITY LEVEL

MyApp Properti

Figure 1 | On the application Security tab, always enforce access checks
at the application level and set the security level to perform access
checks at the application and component levels.

44 | VISUAL C++ DEVELOPERS JOURNAL MARCH 2001 | www.vcdj.com

Productive [(¢]

8 Tips for Avoiding COM+
Security Pitfalls

by Juval Lowy

e Windows 2000
e Visual C++ 6.0
e Microsoft Platform SDK

rity settings. Configuring security through an admin-
istrative tool makes it easier to manage and maintain
your application’s security policy.

COM+ security solves some classic distributed-
computing problems difficult to solve on your own or
requiring a lot of developmentand testing effort. Even
with a single-machine application, COM+ security
can provide elegant solutions for administration and
configuration issues. All you have to do is understand
a few simple security concepts and configure your
application—COM?+ does the rest. But no service is
flawless, and security is no exception. In this article
you’ll learn about eight COM+ security pitfalls, and
whenever possible, you’ll find out how to avoid them.

This article assumes you’re familiar with COM+
security and that you understand terms such as role-
based security, authentication, and authorization. See
Resources for articles that cover COM+ security ba-
sics. If you’re unfamiliar with these terms, read those
articles first.

1. Don't Call ColInitializeSecurity()

If you're familiar with DCOM security, calling
ColnitializeSecurity() is second nature. In the old
DCOM days, ColnitializeSecurity() opened the door
to manageable security, and any properly written
DCOM server called ColnitializeSecurity() to ensure
the required security levels. A configured COM+
component, however, can’t call ColnitializeSecurity()
because COM+ loads any configured component in a
hosting process. If the component is part of a server
application, COM+ calls ColnitializeSecurity() when
COM+ creates the process, with the application global
security settings as parameters. If the component is

PRODUCTIVE COM+

part of a library application, the hosting process had
to call ColnitializeSecurity() before doing anything
else with COM, or else COM would have called
ColnitializeSecurity() for the hosting process.

ColnitializeSecurity() mightbe an issue when port-
ing an existing DCOM server to COM+. If the ported
server used ColnitializeSecurity(), you’ll have to re-
move the call from the code, look at the parameters for
ColnitializeSecurity(), and configure the global appli-
cation security settings accordingly.

2. Don‘t Perform Access Checks Only at
The Process Level

The Security level properties group is in the center of
every application’s Security tab (see Figure 1). This
Security level is the role-based security master switch
for that application’s components. Setting the master
switch to the upper position (“Perform access checks
only at the process level”) disables all role-based secu-
rity configurations at lower levels, including compo-
nent, interface, and method (see Figure 2). Perform-
ing access checks only at the process level allows all calls
through, regardless of the lower levels’ settings, as long
as the calls pass the generic application-level authori-
zation check, which I'll discuss next.

Asside effect of performing the security checks only at
the process level is you won’t be able to make any pro-
grammatic role-based security checks inside your com-
ponents because the security information won’t be partof
the call object. You won’t be able to access interfaces such
as ISecurityCallContext. When you create new objects,
COM+ ignores their security requirements in deciding
which context to activate them in.

Because you can turn off role-based security at the
component level (see Figure 3), you shouldn’t disable
role-based security at the application level. Instead,
disable security only for those components that don’t
require it. As a rule, always enable security at the highest
level possible and disable it at the lowest level possible.

3. Don’t Disable Application-Level
Authorization

At the top of your application’s Security tab is the
Authorization checkbox (see Figure 1). When you
check the “Enable access checks for this application”
checkbox, COM+ verifies that the calling client is a
member of at least one role defined for the application
(remember, you define roles at the application level).
This step accelerates access denials to callers because if
the caller isn’t a member of any role defined for the
application, it’s pointless to proceed and check at
lower levels to determine whether the caller should be
granted access.

If you don’t check the authorization checkbox—
even ifa componentis set to use and enforce role-based
security—COM+ allows in all calls to that compo-
nent, regardless of the caller’s identity and role mem-
bership. This is dangerous because your components
might require declarative access control, and they
don’t have another mechanism in place to implement
access-control requirements.

In addition, when you leave the authorization
checkbox unchecked, the component security tab

SET THE PROCESS LEVEL SECURITY CHECK

Bank Component Properties

Figure 2 | When you set the security access check at the process level,
you disable and ignore all security configurations at the component,
interface, and method levels.

DEACTIVATE ROLE-BASED SECURITY

21x

Bank Component Properties

O % Customer
[#8 Teller
| $8 Bank Manager
|0 %8 Loan Consultant

Figure 3 | Because you can disable role-based security at the component
level, you shouldn’t disable role-based security at the application level.

www.vcdj.com | VISUAL C++ DEVELOPERS JOURNAL MARCH 2001 | 45

Productive Hee]JE3

won'’t be grayed out. The component, interface, and method
level Security tab will appear to be functioning, but they are
ignored. Always leave application-level authorization checked.

4. Enable Application-Level Authorization
Carefully

As you just learned, you should always enable application-level
authorization. But what happens if your application has a
number of components requiring role-based security and a few
other components that don’t? The components not requiring
access control mightbe servingadifferentset of clients altogether.
The problem with application-level authorization is when a call

OuTsSMART COM+

',Vrr Component Services

Everyone

B g Place Holder
E% leers

Figure 4 | By adding a role as a placeholder for the “Everyone” user, you
allow calls from users that are not part of any other role to access
components that don't require access security.

EXPORT USERS

pplication Export Infi
Please enter information required to export this application.

Figure 5 | When exporting a COM+ application, the wizard lets you

export the users associated with the roles. Use this setting with care, as
users are deployment-site specific.

46 | VISUAL C++ DEVELOPERS JOURNAL MARCH 2001 | www.vcdj.com

comes into an application, COM+ verifies that the caller is a
member of at least one role defined for this application. If the
callerisn’tamember, COM+ denies the calleraccess—evenifthe
calleris trying to accessa component not requiring access control.
Fortunately, you can outsmart COM+ by defining a new
role in your application, called Place Holder, and adding an
Everyone user to it (see Figure 4). Now all the callers are
members of at least one role, and components that don’t
require role-based security can accept calls from any user.

5. Avoid Sensitive Work at the Object Constructor
Imagine a situation where, using role-based security, you
grant a client access to one component in your application,
component A, but not to another component, B. When the
client tries to create component B, COM+ creates the object,
but only lets the client access the [Unknown methods of
component B and denies access to any other interface.
COM-+ does this by design to avoid a common DCOM
pitfall: allowinga client to create a new object in a new process
while forgetting to grant the client access to the object inside.
This mistake results in a zombie process because the client
can’t even call IUnknown::Release() on the object it created.
The preceding COM+ scenario implies that the component
B constructor is actually executing code on behalf of a client that
is not allowed to access the component. To avoid this pitfall,
don’t do any sensitive security work in the object constructor.

6. IsCallerInRole() Returns TRUE When Security
Isn’t Enabled

When administrative role-based security isn’t granular enough,
you can use programmatic role-based security to verify a
caller’s membership ina particular role. For example, imagine
a bank component where one requirement is that a customer
can only transfer money if the sum involved is less than
$5,000, while a bank teller can transfer any amount. Declara-
tive role-based security goes down only to the method level—
not the parameter level—so role-based security can only
assure you that the caller is either a teller or a customer.

To implement the preceding requirement, you must
find out the caller’s role programmatically. COM+ makes
this easy. Every method call is represented by a COM+
call object. The call object implements an interface called
ISecurityCallContext, obtained by calling CoGetCallCon-
text(). ISecurityCallContext provides a method called
IsCallerInRole(), defined as:

HRESULT IsCallerInRole(
BSTR bstrRole,
VARIANT_BOOL* pbInRole);

The role is indicated by the string bstrRole, and *pbInRole
will be true if the caller is a member and false otherwise.
IsCallerInRole() lets you verify the caller’s role membership.
You must enable properly role-based security, however, for
ISecurityCallContext:IsCallerInRole() to return accurate
results. In both the following two scenarios, IsCallerInRole()

always returns TRUE regardless of the actual caller’s role
membership. Scenario 1: You enable role-based security
at the application level, but you don’t enforce it at the
component level (see Figure 3); calls to ISecurityCallCon-
text::IsCallerInRole() from within the component always
return TRUE. Scenario 2: At the application level, you don’t
enforce authorization; all calls to ISecurityCallCon-
text::IsCallerInRole() always return TRUE, even if you en-
force component-level access checks.

IsCallerInRole() misbehaves in both a library and a server
application when either scenario takes place. To overcome
this, you should always call another method of
ISecurityCallContext to verify that security is enabled
before checking role membership. This method, called
IsSecurityEnabled(), is defined as:

HRESULT IsSecurityEnabled(VARIANT_BOOL* pbIsEnabled);

Download Listing 1 to learn how to use IsSecurityEnabled()
in the bank example (see the Go Online Box for details).

7. Avoid Exporting Users With Roles

It’s important to understand that roles are an integral part of
your design, while allocating users to roles is part of your
application deployment. Your application administrator
should perform the final allocation of users to roles at the
customer site. When deployed, yourapplication should already
have all the roles predefined in it, and the administrator should
only allocate the users to roles. When you export a COM+
application, the application export wizard gives you the option
of exporting the user identities with the roles (see Figure 5).

PROTECT YOUR SETTINGS

Figure 6 | Disabling and enabling changes to your application isn't
password protected, which opens the door for those who aren’t product
administrators to change your security settings.

48 | VISUAL C++ DEVELOPERS JOURNAL MARCH 2001 | www.vcdj.com

The application adminis-
trator should only use this
option when making cloned
installations at a particular
customer site, from one ma-
chine to another. In fact,
exporting user information

R ESOURCES

o COM+ Security under
component services in

Access Secunty aJoy” by
3 Juval Lowy,: February 2001

from one deployment site to
another might constitute a
security breach. Customers
don’t want employee lists, user names, or the role they play in
the organization available anywhere, let alone at another
company’s site. As a developer, exporting users with roles isn’t
useful to you.

8. Disabling Changes to the Application
Configuration Isn't Password Protected

Every COM+ application hasa Permission properties group on
the Advanced tab of its Properties page (see Figure 6). Selecting
“Disable changes” prevents anybody from altering your appli-
cation settings, as well as preventing people from making
changes at the component, interface, and method levels. You
might think this is a good way to preserve your security settings
and access policy, but this checkbox isn’t password protected—
so anyone with administrative privileges can modify your
precious security settings and introduce security gaps in your
application. Customer-side administrators might be tempted
to change your security settings to accommodate something
else in the system or fool around with your application. This
checkbox is there for a reason, and I don’t understand why
Microsoft didn’t make it password protected as well. With this
in mind, your company’s product administrator should rou-
tinely verify that the security configurations haven’t changed
since the original deployment.

About the Author

Juval Lowy is a seasoned software architect. He spends his time
consulting, publishing, and conducting classes and conference talks
on component-oriented design and COM/COM+. He was an early
adopter of COM, and has unique experience in COM+ design. This
article is based on excerpts from his up-and-coming book COM+ and
.NET (0'Reilly), scheduled for release in spring 2001. E-mail him at
idesign@componentware.net.

 Use these DevX Locator+ codes at www
directly to these related resources. ‘ ,
- V0103 Download all the code for this is issue. of VC

- VC0103PC Download the code for th'lS artu:le separately. .

VC0103PC_T Read this article online. DevX Premer (h.
membership is reqmred

~ Want to subscribe to the Premier Club" Go to o
www.devx.com.

